Physics 09-07 Kirchhoff's Rules		Name:	
Kirchhoff's Rules			
Iunction Rule			
Total	a junction must	the total current	of a junction
Loon Rule			
For a -circuit lo	on the of all the r	notential – total of al	notential – A
(or the total voltage of a loop	is zero)		- potentiui = 0
Reasoning Strategy			
1. Draw the	_ in each branch of the circuit (flow	vs out of positive terminal of bat	tery). Choose any
If you a	re wrong you will get a	current.	
2. Mark each	with a and	signs at opposite ends	to show
drop. (Current flows fro	m + to – through a resistor)		
3. If the current	the element at +, voltage		
4. If the current	the element at –, voltage	 many independent	as there are
6. Solve the	of equations.		
Find the current through the circ			
10.09 kΩ 1004 Ω 1004 Ω			

Find the currents through each element.

Homework

- 1. Can all of the currents going into the junction in Figure 1 be positive? Explain.
- 2. Apply the junction rule to junction b in Figure 2 Is any new information gained by applying the junction rule at e? (In the figure, each emf is represented by script E.)
- 3. Apply the loop rule to loop afedcba in Figure 2.
- 4. Apply the loop rule to loop abcdefgha in Figure 3. (OpenStax 21.31) $-I_2R_2 + E_1 - I_2r_1 + I_3R_3 + I_3r_2 - E_2 = 0$
- 5. Apply the loop rule to loop aedcba in Figure 3. (OpenStax 21.32) $I_1R_1 + I_2r_1 E_1 + I_2R_2 = 0$
- 6. Apply the junction rule at point a in Figure 4. (OpenStax 21.35) $I_3 = I_1 + I_2$
- 7. Apply the loop rule to loop abcdefghija in Figure 4. (OpenStax 21.36) $-I_1R_1 + E_1 - I_1r_1 - I_1R_5 - I_3r_4 - E_4 - I_3r_3 + E_3 - I_3R_3 = 0$
- 8. Solve the circuit in Figure 3. Use the loop abcdefgha for one of your equations. (OpenStax 21.38) $I_1 = 4.75 \text{ A}$, $I_2 = -3.5 \text{ A}$, $I_3 = 8.25 \text{ A}$

Figure 1

Figure 2

Figure 3 Created by Richard Wright – Andrews Academy

Figure 4